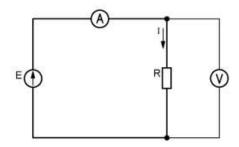
УРАЛЬСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра экспериментальной физики

ОТЧЕТ по лабораторной работе №1 «Постоянный ток»

Студент Юмагуен Ришат Русланович
Группа Фт-290013
Преподаватель _Райков Дмитрий Вячеславович_
Дата 04.05.2021 г.

1.1 Закон Ома


Цель лабораторной работы:

- 1) Измеряя токи и напряжения в цепи, экспериментально убедиться в верности закона Ома и построить графики зависимости тока от напряжения:
- I = f(U) при R = const
- 2) Изменяя сопротивление, при неизменном напряжении, постройте график зависимости тока от сопротивления: I = f(R) при U = const

Оборудование и приборы:

- 1. рабочая станция NI ELVIS II
- 2. источник напряжения Е
- 3. резистор с сопротивлением R
- 4. амперметр А
- 5. вольтметр V

Теоретические сведения:

Закон Ома для участка цепи:

Сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи:

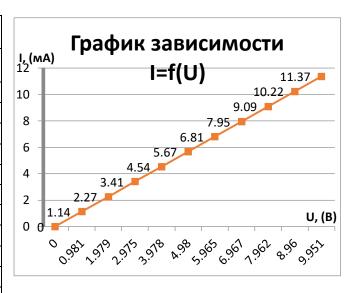
$$I = \frac{U}{R}$$

Сопротивление является физической характеристикой проводника, и измеряется в Ом.

$$R = \frac{pl}{S}$$

Сопротивление можно представить через проводимость:

$$G = \frac{1}{R}$$


Тогда закон Ома можно представить в виде I = GU

Проведенная работа:

1) При изменении E от 1 до 10B

При R = 880 Ом

1171						
Уста	ановка	Измерен	ия	Расчёты		
					Погреш-	
N	+E(B)	V1DC(B)	A1DC(MA)	Rрасч(Ом)	ность о %	Rcp(Ом)
1	0	0	0	880,00	0,00	880,00
2	1	0,981	1,14	860,53	2,21	870,26
3	2	1,979	2,27	871,81	0,93	875,90
4	3	2,975	3,41	872,43	0,86	876,22
5	4	3,978	4,54	876,21	0,43	878,11
6	5	4,98	5,67	878,31	0,19	879,15
7	6	5,965	6,81	875,92	0,46	877,96
8	7	6,967	7,95	876,35	0,41	878,18
9	8	7,962	9,09	875,91	0,47	877,95
10	9	8,96	10,22	876,71	876,71 0,37	
11			11,37	875,20	0,55	877,60

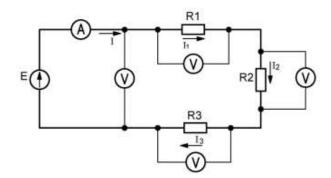
2) Изменение сопротивления R от 100 Ом до 1000 Ом При E = 1 B

Уст	ановка	Изме	ерения		Расчёты	
N	R(OM)	R(OM) V1DC(B) A1DC(M		Rрасч(Ом)	Погрешность σ %	Rcp(Ом)
1	0	0,99	0	0	0,00	0,00
2	100	0,987	10	98,70	1,30	99,35
3	200	0,986	5	197,20	1,40	198,60
4	300	0,98	3,33	294,29	1,90	297,15
5	400	0,975	2,5	390,00	2,50	395,00
6	500	0,989	2	494,50	1,10	497,25
7	600	0,981	1,67	587,43	2,10	593,71
8	700	0,984	1,43	688,11	1,70	694,06
9	800	0,991	1,25	792,80	0,90	796,40
10	900	0,981	1,11	883,78	1,80	891,89
11	11 1000 0,982		1	982,00	1,80	991,00

Вывод: произвели теоретические расчёты и экспериментально убедились в выполнении закона Ома для электрической цепи. Погрешность рассчитанных и экспериментальных данных обусловлена возможной неточностью приборов,

неточностью номинала, влажностью, температурой и другими внешними факторами и составляет около 2%.

1.2 Последовательное соединение резисторов:


Цель лабораторной работы:

Экспериментально проверить расчет эквивалентного сопротивления при последовательном соединении резисторов.

Оборудование и приборы:

- 1. рабочая станция NI ELVIS II
- 2. источник напряжения Е
- 3. 3 резистора R1, R2, R3
- 4. амперметр А
- 5. 4 вольтметра V1, V2, V3, V4

Теоретические сведения:

При последовательном соединении по всем резисторам в цепи течет один и тот же ток:

$$I = I_1 = I_2 = I_3$$

Согласно закону напряжений Кирхгофа можно написать:

$$E = I_1 R_1 + I_2 R_2 + I_3 R_3 = I (R_1 + R_2 + R_3) = I R_{\text{9KB}}$$
$$R_{\text{9KB}} = R_1 + R_2 + R_3$$

Следовательно, эквивалентное сопротивление последовательной цепи равно сумме сопротивлений всех последовательно соединенных резисторов.

$$U = IR = > U = U_1 + U_2 + U_3$$

 $U_1: U_2: U_3 = R_1: R_2: R_3$

т. е., чем больше сопротивление резистора в последовательной цепи, тем больше будет падение напряжения на нем. В случае последовательного соединения нескольких (n) резисторов с одинаковым сопротивлением R эквивалентное сопротивление цепи $R_{\rm экв}$ будет в n раз больше, т. е. $R_{\rm экв}$ n R

Напряжение U_i на каждом резисторе при этом будет в n раз меньше общего напряжения U:

$$U_i = \frac{U}{n}$$

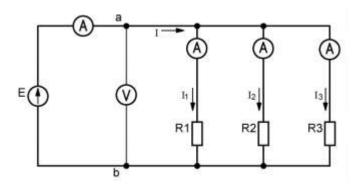
Проведенная работа:

		Устан	овка		Измерения							
N	N +E(B) R1(OM) R2(OM) R3(OM)					V2DC(B)	V3DC(B)	V4DC(B)	A1DC(MA)			
0	1	880	700	400	0,45	0,35	0,2	0,99	0,52			
1	4	880	700	400	1,78	1,41	0,8	3,96	2,06			
2												
	Расчёты											

	Расчеты											
R1(OM)	R2(OM)	R3(Ом)	Rэкв.сум(Ом)	Rэкв.отн(Ом)		R1ср(Ом)	R2cp(Ом)	R3ср(Ом)				
865,38	673,08	384,62	1923,08	1903,846154		864,5133	680,1303	387,1048				
864,08	684,47	388,35	1936,89	1922,330097	Погрешность о %	1,76	2,84	3,22				
864.08	682.85	388.35	1935.28	1922.330097								

<u>Вывод:</u> Проанализировав данные получили, что в последовательной цепи при неизменном $R_{\rm экв}$, сила тока возрастает прямо пропорционально увеличению общего напряжения, а при постоянной силе тока — напряжение на резисторах растёт в соответствии с повышением их сопротивлений. Погрешность рассчитанных и экспериментальных данных составляет около 2,5%

1.3 Параллельное соединение резисторов:


Цель лабораторной работы:

Экспериментально проверить расчет эквивалентного сопротивления при параллельном соединении резисторов.

Оборудование и приборы:

- 1. рабочая станция NI ELVIS II
- 2. источник напряжения Е
- 3. 3 резистора R1, R2, R3
- 4. 4 амперметра А1, А2, А3, А4
- 5. вольтметр V

Теоретические сведения:

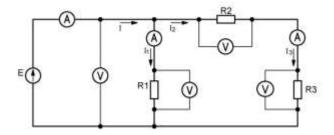
При параллельном соединении ко всем резисторам цепи приложено одинаковое напряжение, а согласно закону токов Кирхгофа, общий ток цепи:

$$I = I_1 + I_2 + I_3$$
 Или $I = \frac{U}{R_1} + \frac{U}{R_2} + \frac{U}{R_3} = U\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right) = U*G_{\scriptscriptstyle \mathrm{ЭKB}}$ где $\frac{1}{R_{\scriptscriptstyle \mathrm{ЭKB}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

			Устан	новка						И	змерения	1		
N	+E(B)		R1(OM) R2(OM) R3(OM)		R3(Ом)	V1D	C(B)	A1DC(MA)		A21	DC(MA)	A3DC(MA)	A4DC(MA)	
0		1	88	0 700	400		0,99		1,13		1,42	2,5	5,0)7
1		4	88	0 700	400		3,96		4,51		5,68	9,99	20,2	<u>'</u> 7
2		6	88	0 700	400		5,92 6,74			8,49	14,96	30,3	35	
						Расч	ёты							
G1		G	2	G3	Gэкв.сул	м	Gэкв	в.отн	Rэкв(0	Эм)	Погреш %	ность (Rэкв) σ		
0,00)1141	0,	.001434	0,00252525	0,00510	.0101 0,0051212 19		2 195,266 1,0		1,098901099)			
0,00	1139	39 0,001434 0,00252273 0,00509596 0,0051187		195,3	363		1,05010924	1						
0,00	1139			195,0	058		1,204561501	L						

<u>Вывод:</u> Анализ данных показывает, что погрешность расчётов составила значение около 1%. Рассчитали R_{9KB} при параллельном соединении.

1.4 Смешанное соединение резисторов:


Цель лабораторной работы:

Экспериментально проверить расчет эквивалентного сопротивления при смешанном соединении резисторов.

Оборудование и приборы:

- 1. рабочая станция NI ELVIS II
- 2. источник напряжения Е
- 3. 3 резистора R1, R2, R3
- 4. 3 амперметра A1, A2, A3
- 5. 4 вольтметра V1, V2, V3, V4

Теоретические сведения:

При смешанном соединении в цепи присутствуют как параллельно, так и последовательно соединенные резисторы.

Эквивалентное сопротивление цепи при смешанном соединении обычно определяют методом преобразования, при котором сложную цепь поэтапно преобразуют в более простую. Сначала последовательно включенные резисторы с сопротивлениями заменяют эквивалентным сопротивлением:

$$R_{23} = R_2 + R_3$$

Затем определяют эквивалентное сопротивление R экв параллельно включенных сопротивлений R_{23} и R_1 :

$$\begin{split} R_{\text{\tiny ЭКВ}} &= \frac{R_{23}*R_{1}}{R_{23}+R_{1}} \\ U &= U_{1} = U_{2}+U_{3} \\ I &= I_{1}+I_{2} \\ R'_{\text{\tiny ЭКВ}} &= \frac{U}{I} \end{split}$$

Проведенная работа:

865,69

694,14

395,60

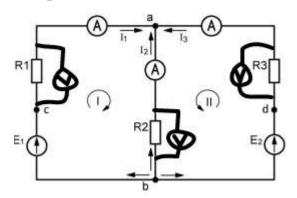
		Устано	овка			Измерения						
N	+E(B)	R1(OM)	R2(OM) R3(Ом)	V1DC(B)			V4DC(B)	A1DC(MA)	A2DC(MA)	ADC(MA)	
0	1	880	700	400	0,997	0,63	36	0,362	0,999	1,149	0,912	2,107
1 4		880	700	400	3,97	2,5	54	1,44	3,98	4,58	3,65	8,4
2	6	880	700	400	5,93	3,7	79	2,16	5,95	6,85	5,46	12,6
				Расчёты	l							
R'1	R'1(Om) R'2(Om) R'3(Om)			'3(OM)	Rэкв(Ом)	R'	'экв	s(OM)				
	867,71	69	7,37	396,93	474	,13		465,64				
	866,81	69	5,89	394,52	473	3,81		464,12				

464,25

472,22

<u>Вывод:</u> Научились рассчитывать токи и напряжения как общие, так и на каждом из резисторов. А так же рассчитали *Rэкв для смешанной цепи двумя способами*. Погрешность расчетов около 3 %.

1.5 Законы Кирхгофа:


Цель лабораторной работы:

Экспериментально убедиться в верности первого и второго законов Кирхгофа. Измерить токи в ветвях и падение напряжения на сопротивлениях, построить потенциальную диаграмму для контуров.

Оборудование и приборы:

- 1. рабочая станция NI ELVIS II
- 2. 2 источника напряжения +Е, -Е
- 3. 3 резистора R1, R2, R3
- 4. 3 амперметра A1, A2, A3
- 5. 3 вольтметра V1, V2, V3

Теоретические сведения:

Первый закон Кирхгофа:

Для любого узла цепи алгебраическая сумма токов равна нулю. $\Sigma I_k=0$

Второй закон Кирхгофа:

Алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре.

$$\sum E_i = \sum I_i R_i$$

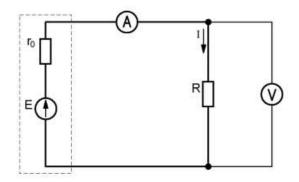
Проведенная работа:

			Установ	ка				Измерен	ния		
N	+E(B) E2(B) R1(OM) R2(OM) R3(OM)			A1DC(MA)	A2DC(MA)	A3DC(MA)	V1DC(B)	V2DC(B)	V3DC(B)		
1	1 -10 880			700	400	6,5	6,73	-13,2	5,72	4,71	-5,28
		Расч	ёты								
Ek-	Ek-Ui,(B) I Ek-Ui,(B) II										
кон	контур контур										
	-0,01 -0,01										

узел	q	R
b	0	0
С	1	0
а	-4,72	880
d	-10	1580
b	0	1580

<u>Вывод:</u> Погрешность расчётов минимальна. Экспериментально проверили достоверность первого и второго законов Кирхгофа, построили потенциальную диаграмму для контуров.

1.6 Источник постоянного напряжения:


Цель лабораторной работы:

Экспериментальное определение внутреннего сопротивления источника постоянного напряжения и построение графика внешней характеристики.

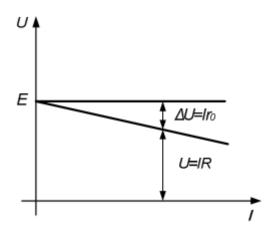
Оборудование и приборы:

- 1. рабочая станция NI ELVIS II
- 2. реальный источник постоянного напряжения $E(r_0 внутреннее сопротивление)$
- 3. резистор с сопротивлением R
- 4. амперметр А
- 5. вольтметр V

Теоретические сведения:

Поскольку у реального источника постоянного напряжения внутреннее сопротивление не равно нулю, разность потенциалов между его выводами зависит от протекающего через источник тока. Эта зависимость называется внешней характеристикой источника.

 $\Delta U = \Delta I r_0; \ \Delta U = E - U$ (Е - разность потенциалов между выводами источника при I = 0; U - напряжение приложенное к внешней цепи при $I \neq 0$)


Величина Е называется электродвижущей силой (ЭДС) источника и определяется как работа, затрачиваемая сторонними силами на перемещение единицы положительного заряда от отрицательного контакта к положительному.

Компоненты схемы замещения реального источника постоянного напряжения, ЭДС, и внутреннее сопротивление источника физически неразделимы.

Итак, из полученных выражений при $\Delta I = I$ получаем выражение для внешней характеристики источника:

$$\mathbf{U} = \mathbf{E} - \mathbf{I} \mathbf{r}_0$$

График внешней характеристики источника напряжения при подключенной нагрузке R



Проведенная работа:

График внешней характеристики источника напряжения при подключенной нагрузке R:

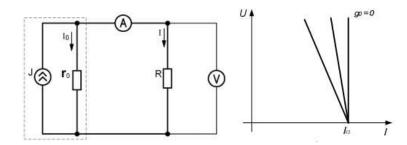
Установка	Измерения	Расчёты
JCIGITODIA	PISMEPCTIVIA	I de-leibi

N	r0(Ом)	E(B)	R(OM)	V1DC(B)	A1DC(MA)	ΔU(B)	ΔΙ(ΜΑ)	r0(Om)
0	40	10	0	10	0	0	0	40
1	40	10	500	9,26	18,52	0,74	18,52	39,96
2	40	10	600	9,38	15,63	0,62	15,63	39,67
3	40	10	700	9,46	13,51	0,54	13,51	39,97
4	40	10	800	9,53	11,91	0,47	11,91	39,46
5	40	10	900	9,58	10,64	0,42	10,64	39,47
6	40	10	1000	9,62	9,62	0,38	9,62	39,50
							r ср.зн.	39,72

Вывод:

Построили внешние характеристики источника ЭДС при разных сопротивлениях. Погрешность расчётов составила 5%. Экспериментально определили внутреннее сопротивление источника ЭДС

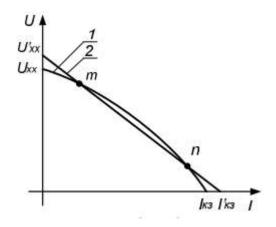
1.7 Источник постоянного тока:


Цель лабораторной работы:

Экспериментальное определение внутреннего сопротивления источника тока, и построение графика внешней характеристики.

Оборудование и приборы:

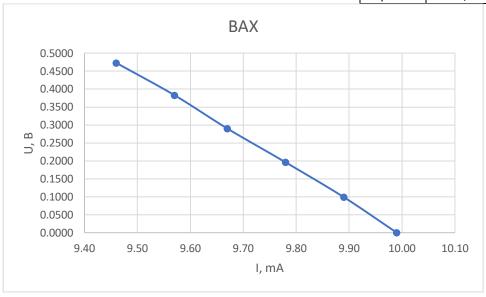
- 1. рабочая станция NI ELVIS II
- 2. реальный источник постоянного тока $J(r_0 внутреннее сопротивление)$
- 3. резистор с сопротивлением R
- 4. амперметр А
- 5. вольтметр V


Теоретические сведения:

Вольтамперная характеристика идеального источника тока представляет собой вертикальную линию. Реальный источник тока неидеален, и неспособен бесконечно изменять выходное напряжение в зависимости от нагрузки

В общем случае зависимость напряжения на выводах от тока источника нелинейна. Зависимость между выходным напряжением и током называется внешней характеристикой источника тока и определяется двумя характерными точками соответствующими:

- -режиму холостого хода (I = 0; U = U_{xx})
- -режиму короткого замыкания (U = 0; $I = I_{K3}$)


$$U = U_{xx} - Ir_0;$$
 $r_0 = U_{xx} / I_{K3};$

$$I = Uxx/r_0 - U/r_0 = Ix_3 - U/r_0;$$

$$I=I$$
кз U g $_0$; где $g_0=1/r_0$

Проведенная работа:

	Установ	ка		Измерен	ия	Расчёты			
N	r0(Ом)	M) J(MA) R(OM) V		V1DC(B)	A1DC(MA)	ΔU(B)	ΔΙ(ΜΑ)	r0(Ом)	
0	880	10	0	0,0000	9,99	0,0000	0,01	880,00	
1	880	10	10	0,0989	9,89	0,0989	0,11	889,79	
2	880	10	20	0,1960	9,78	0,1960	0,22	899,80	
3	880	10	30	0,2900	9,67	0,2900	0,33	910,03	
4	880	10	40	0,3830	9,57	0,3830	0,43	919,54	
5	5 880 1		50	0,4730	9,46	0,4730	0,54	930,23	
	•			•		•	r ср.зн.	904,90	

<u>Вывод:</u> экспериментально определили внутреннее сопротивление источника тока, и построили график внешней характеристики источника тока. Также, при большом внутреннем сопротивлении r_0 , ток не зависит от значения нагрузки R.